
6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 1/19

Studying Single Particle Drifts with
Charged Particle Tracing

Table of Contents
Introduction to Charged Particle Tracing
The E x B Drift
The GradB Drift
The Curvature Drift

Introduction to Charged Particle Tracking
A charged particle tracking code (or 'particle tracker') is a simulation tool that takes one or
more particles (with defined initial conditions) and tracks their path through a space with
defined properties like electric and magnetic fields. This simulation is performed iteratively,
alternating between estimating the fields acting on each particle and then using those fields
to calculate and update their acceleration, velocity, and position. In the first section of this
notebook, we will write a basic particle tracing algorithm and then use it to visualize the
gyration of a proton in a constant magnetic field.

A very basic particle tracker could iteratively calculate the velocity and position of a particle
as

In [1]: import sys

if 'google.colab' in str(get_ipython()):
 if 'plasmapy' not in sys.modules:
 !pip install plasmapy==2023.5.0

%matplotlib inline

If running locally, uncomment this line to allow dynamic plots
#%matplotlib notebook

import numpy as np
import astropy.units as u
import astropy.constants as const

import matplotlib.pyplot as plt

from plasmapy.particles import Particle
from plasmapy import formulary
from plasmapy.simulation.particle_integrators import boris_push

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 2/19

where and are the electric and magnetic fields acting on the particle at the th
timestep.

When coded, this function looks like this:

Let's test this tracker with a simple example: a proton gyrating in a constant magnetic field.
We'll put the magnetic field in the Z direction. Let's give the particle some velocity along the
field (so the orbits don't overlap), but also some perpendicualar velocity so that it gyrates.

Fi = qEi + q→v × →Bi

vi+1 = vi + Fi/mdt

xi+1 = xi + vidt

Ei Bi i

In [2]: def track_particle_basic(E0, B0, x0, v0, particle, times):
 """
 This function tracks a single particle with intial position x0 and velocity v0
 provided array of times. The electric and magnetic fields (E0, B0) are assumed
 """

 # Initialze an array to save the trajectory and particle velocity
 x = np.zeros((times.size+1, 3))*u.m
 v = np.zeros((times.size+1, 3))*u.m/u.s
 # Set the first entry to the initial position/velocity of the particle
 x[0,:] = x0
 v[0,:] = v0

 # Calculate the simulation timestep
 dt = np.mean(np.gradient(times)).to(u.s)

 # Loop over all of the times in the times array
 for i, t in enumerate(times):
 # Calculate the force on the particle
 F = particle.charge * (E0 + np.cross(v[i,:], B0))

 # Update the the particle velocity
 v[i+1,:] = v[i,:] + F/particle.mass*dt

 # Calculate the new particle position, store in the next element of the arr
 x[i+1,:] = x[i,:] + v[i,:]*dt

 return x,v

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 3/19

How long do we want to run the tracker for?

If we want to visualize a number of gyrations in the magnetic field, then we should run it for
several multiples of the gyroperiod!

Similarly, if we want to resolve the gyrations (i.e. have many timesteps within one orbit), then
the separation between times should be less than the gyroperiod.

Gyroperiod: 13.1 ns

Simulation runs for 131.1 ns in steps of 0.13 ns

Now we can put these values into the function to track the particle

The following two functions will visualize the results.

Note: If you're running this Jupyter notebook locally the 3D plots should be interactive, so you
can click and drag to rotate the view. If you are running this notebook in the cloud (for
example on Google Colaboratory) this may not work.

In [3]: # Define the vector E and B fields
E0 = np.array([0,0,0]) * u.V / u.m
B0 = np.array([0,0,5])*u.T

Define the particle (includes it's mass, charge etc.)
and it's position and velocity
particle = Particle('p+')
v0 = np.array([0.5,0,1])*u.m/u.s
x0 = np.array([0,0,0])*u.m

In [4]: fci = (formulary.frequencies.gyrofrequency(np.linalg.norm(B0), particle)/2/np.pi/u.
print(f"Gyroperiod: {(1/fci).to(u.ns).value:.1f} ns")

In [5]: dt = (0.01/fci).to(u.ns).value
times = np.arange(0, (10/fci).to(u.ns).value, dt)*u.ns # Run for 10 gyroperiods, wi
print(f"Simulation runs for {np.max(times).to(u.ns).value:.1f} ns in steps of {dt:.

In [6]: x,v = track_particle_basic(E0, B0, x0, v0, particle, times)

In [7]: def plot3D(x, view=None):
 fig = plt.figure(figsize=(6, 6))
 ax = fig.add_subplot(111, projection="3d")

 # Set the initial view angle
 if view is not None:
 ax.view_init(*view)

 # Plot the orbit
 ax.plot(x[:,0].to(u.nm).value, x[:,1].to(u.nm).value, x[:,2].to(u.nm).value, la

 # Plot the initial position of the particle
 ax.scatter(x[0,0].to(u.nm).value, x[0,1].to(u.nm).value, x[0,2].to(u.nm).value,
 label='Initial Position', color='orange')

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 4/19

Wait - that doesn't look right, does it? The gyroradius should be constant, so the circles
should all be the same size! Instead, we see them increasing in time.

The problem is that our simple particle tracker is not conserving energy, which we can see by
plotting the kinetic energy of the particle as a function of time.

 ax.set_xlabel("X (nm)")
 ax.set_ylabel("Y (nm)")
 ax.set_zlabel("Z (nm)")
 ax.legend();

 return ax

The view keyword specifies the (elevation angle, azimuthal angle, roll angle) in
plot3D(x, view=(30,45,0));

In [8]: def plotKE(times, particle, v):
 KE = 0.5*particle.mass*np.linalg.norm(v, axis=-1)**2

 fig, ax = plt.subplots()
 ax.plot(times.to(u.ns).value, KE.to(u.J).value[:-1])
 ax.set_title("Kinetic Energy vs. Time")
 ax.set_xlabel("Time (ns)")
 ax.set_ylabel("Kinetic Energy (J)");

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 5/19

Since a magnetic field alone can do not work on the particle, the particle's energy should be
constant, not increasing!

It turns out that the problem is that updating the particle velocity and position within one
timestep is not precise enough. Instead, we need to use a more advanced algorithm called
the Boris Push. This function is implemented in PlasmaPy, so we can just import it into a new
tracking function.

For more details, see Birdsall & Langdon "Plasma Physics via Computer Simulations" (2004)

plotKE(times, particle, v)

1

1

In [9]: def track_particle_boris(E0, B0, x0, v0, particle, times):
 """
 This function tracks a single particle with intial position x0 and velocity v0
 provided array of times. The electric and magnetic fields (E0, B0) are assumed
 """

 # Initialze an array to save the trajectory and particle velocity
 x = np.zeros((times.size+1, 3))*u.m
 v = np.zeros((times.size+1, 3))*u.m/u.s
 # Set the first entry to the initial position/velocity of the particle
 x[0,:] = x0
 v[0,:] = v0

 # Calculate the simulation timestep

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 6/19

Now let's try running the same particle through the new tracker.

 dt = np.mean(np.gradient(times)).to(u.s)

 # Loop over all of the times in the times array
 for i, t in enumerate(times):
 # The Boris push function advances the particles in a way that conserves ki
 # This function is part of PlasmaPy
 _x = x[i,:].to(u.m).value
 _v = v[i,:].to(u.m/u.s).value
 boris_push(_x,
 _v,
 np.array([B0.to(u.T).value,]),
 np.array([E0.to(u.V/u.m).value,]),
 particle.charge.to(u.C).value,
 particle.mass.to(u.kg).value,
 dt.to(u.s).value)
 x[i+1,:]=_x*u.m
 v[i+1, :] =_v*u.m/u.s

 return x,v

In [10]: x,v = track_particle_boris(E0, B0, x0, v0, particle, times)
plot3D(x, view=(30,45,0))
plotKE(times, particle, v);

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 7/19

Much better! The particle energy is now conserved, and as a result the gyrorbits remain the
same size.

Before we proceed to some more complex examples, we need to add one more feature to
the particle tracer: the ability to handle fields that vary in space. In order to define these
fields, we first need to define a grid of spatial coordinates.

How big should we make the grid? We want the particle to stay on the grid throughout the
entire gyration, so the x and y axes need to be larger than the Larmor radius.

rLarmor: 1.04 nm

In the z-direction, we know that the final z position of the particle will be , so we'd
better make the array a little longer than that so the particle doesn't leave the grid.

Zmax: 131.06 nm

In [11]: rLarmor = formulary.lengths.gyroradius(np.linalg.norm(B0), particle, Vperp=v0[0])
print(f"rLarmor: {rLarmor.to(u.nm).value:.2f} nm")

vztmax

In [12]: zmax = (v0[2]*times[-1]).to(u.nm)
print(f"Zmax: {zmax.to(u.nm).value:.2f} nm")

In [13]: xaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)
yaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 8/19

Now fields can be defined as vector arrays that have a value at each vertex of the grid. Let's
start by re-creating the example of a constant B field and zero E field.

Each of these arrays has the shape E.shape = (n_xpos, n_ypos, n_zpos, 3)

Then finally we need to add the grid to the particle tracker and add some lines to estimate
the fields acting on the particle at a given position.

The approximation of a value from a discrete grid at a given continuous position like this is
called interpolation, and there are many sophisticated algorithms for doing it. For the sake of
simplicity, we will use the "nearest neighbor" algorithm, which just assumes that the fields on
the particle are equal to those on the nearest grid vertex.

zaxis = np.linspace(0*u.nm, 1.2*zmax, num=100)
X, Y, Z = np.meshgrid(xaxis, yaxis, zaxis, indexing='ij')

In [14]: # Create grids of fields to go on the spatial grid
E = np.zeros((*X.shape, 3))*u.V/u.m

B = np.zeros((*X.shape, 3))*u.T
B[:,:,:, 2] = 5*u.T

In [15]: def track_particle(xaxis, yaxis, zaxis, E, B, x0, v0, particle, times):
 """
 This function tracks a single particle with intial position x0 and velocity v0
 provided array of times. The electric and magnetic fields (E0, B0) are assumed
 """

 # Initialze an array to save the trajectory and particle velocity
 x = np.zeros((times.size+1, 3))*u.m
 v = np.zeros((times.size+1, 3))*u.m/u.s
 # Set the first entry to the initial position/velocity of the particle
 x[0,:] = x0
 v[0,:] = v0

 # Calculate the simulation timestep
 dt = np.mean(np.gradient(times)).to(u.s)

 # Loop over all of the times in the times array
 for i, t in enumerate(times):

 # Locate the nearest grid cell to the particle ('nearest neighbor' interpol
 xi = np.argmin(np.abs(x[i,0] - xaxis))
 yi = np.argmin(np.abs(x[i,1] - yaxis))
 zi = np.argmin(np.abs(x[i,2] - zaxis))

 # Get the E and B fields at the current particle location
 _E = np.array([E[xi, yi, zi, :].to(u.V/u.m).value,])
 _B = np.array([B[xi, yi, zi, :].to(u.T).value,])

 # The Boris push function advances the particles in a way that conserves ki

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 9/19

Running the new tracker gives us the same results as before (as expected).

We will use this final tracker function for the remainder of the examples in this notebook.

The ExB Drift
The ExB drift occurs when a charged particle moves through perpendicular E and B fields. In
this example, we will calculate the ExB velocity for the particle defined below.

 # This function is part of PlasmaPy
 _x = x[i,:].to(u.m).value
 _v = v[i,:].to(u.m/u.s).value
 boris_push(_x, _v, _B, _E,
 particle.charge.to(u.C).value,
 particle.mass.to(u.kg).value,
 dt.to(u.s).value)
 x[i+1,:]=_x*u.m
 v[i+1, :] =_v*u.m/u.s

 return x,v

In [16]: x,v = track_particle(xaxis, yaxis, zaxis, E, B, x0, v0, particle, times)
plot3D(x, view=(30,45,0));

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 10/19

We can use a function from the PlasmaPy Formulary module to calculate the expected
magnitude of the ExB drift velocity in these fields:

ExB Velocity: [0.02 0. 0.] m / s

Now let's run a particle tracking simulation to confirm this estimate. First we will define the
particles initial velocity and positon.

We'll chose the intial position so the gyrocenter is at (x,y)=(0,0). We'll give the particle some
perpendicular velocity and a paralell velocity, so it orbits while drifting along the field.

As in the introduction above, we will define a grid and time array over which to run the
simulation, using the gyroperiod and gyroradius to help chose an appropriate domain.

Finally, we need to create grids of fields at each of these positions. As in the introduction, the
fields are constant everywhere so these arrays have the same vector value at each point.

Done! Now we can visualize the results. First, let's plot the evolution of the coordinates of
the particle in time. We see that

The ExB drift moves the particle in the X direction.

In [17]: # Define strengths for the E and B fields
E0 = 0.1 * u.V / u.m
B0 = 5*u.T
particle = Particle('p+')

In [18]: v_ExB = formulary.drifts.ExB_drift(E0*np.array([0,1,0]), B0*np.array([0,0,1]))
print(f"ExB Velocity: {v_ExB}")

In [19]: v0 = np.array([0.5,0,1])*u.m/u.s
x0 = np.array([0, rLarmor.to(u.m).value, 0])*u.m

In [20]: fci = (formulary.frequencies.gyrofrequency(np.linalg.norm(B0), particle)/2/np.pi/u.
times = np.arange(0, (20/fci).to(u.s).value, (1/fci/100).to(u.s).value)*u.s

In [21]: rLarmor = formulary.lengths.gyroradius(np.linalg.norm(B0), particle, Vperp=v0[0])
xaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)
yaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)
zaxis = np.linspace(0, 1.2*v0[2]*times[-1], num=100)
X, Y, Z = np.meshgrid(xaxis, yaxis, zaxis, indexing='ij')

In [22]: # Create grids of fields to go on the spatial grid
E = np.zeros((*X.shape, 3))*u.V/u.m
E[..., 1] = E0

B = np.zeros((*X.shape, 3))*u.T
B[..., 2] = B0

In [23]: # Call the function on our particle + fields
x,v = track_particle(xaxis, yaxis, zaxis, E, B, x0, v0, particle, times)

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 11/19

The particle gyrates around it's gyrocenter in the XY plane.
The particle moves with constant velocity in the Z direction.

Notice how the gyrocenter of the particle in the X direction follows the line predicted by the
ExB velocity we calcualted using the PlasmaPy formulary function.

It's also helpful to visualize the change in each coordinate as a function of time.

Notice how the x position (blue) is gyrating around the position predicted by the theoretical
ExB drift velocity. The predicted velocity is the guiding center drift, meaning that it represents
the motion of the center of the particle's gyration.

In [24]: ax = plot3D(x,view=(30,250,0))

Overplot the theoretical ExB guiding center motion
Plot the theoretical drift
x_final = (times[-1]*(v_ExB + np.array([0,0,v0[2].value])*v0.unit)).to(u.nm).value

ax.plot([0,x_final[0]], [0,x_final[1]], [0,x_final[2]], label='ExB drift')
ax.legend();

In [25]: fig, ax = plt.subplots()
ax.set_title("Trajectory")
ax.set_xlabel("Time (ns)")

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 12/19

The B Drift
The gradient B drift causes the guiding center of a gyrating particle to drift along a gradient
in the ambient magnetic field.

We'll start by defining a particle as before.

ax.plot(times.to(u.ns).value, x[:-1, 0].to(u.nm).value, label='X')
ax.plot(times.to(u.ns).value, x[:-1, 1].to(u.nm).value, label='Y')
ax.plot([], [], color='green', label='Z')
ax.plot(times.to(u.ns).value, (v_ExB[0]*times).to(u.nm).value, color='red', label='
ax.set_ylabel("X,Y position (nm)")

ax2 = ax.twinx()
ax2.plot(times.to(u.ns).value, x[:-1, 2].to(u.nm).value, label='Z', color='green')
ax2.set_ylabel("Z position (nm)");
ax.legend();

∇

v∇B =
mv2

⊥

2qB

→B×∇B

B2

In [26]: particle = Particle('p+')
v0 = np.array([.5,0,0])*u.m/u.s
x0 = np.array([0, 0, 0])*u.m

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 13/19

Now we need a grid of fields with a magnetic field gradient.

The following plot confirms that the magnetic field is constant in Y and Z, but has a gradient
in X.

In [27]: gradB = -0.5*u.T/u.nm
B0 = 6*u.T

Create the grid
rLarmor = formulary.lengths.gyroradius(B0, particle, Vperp=v0[0])
xaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)
yaxis = np.linspace(-1.5*rLarmor, 1.5*rLarmor, num=100)
zaxis = np.linspace(0, 1.2*v0[2]*times[-1], num=100)
X, Y, Z = np.meshgrid(xaxis, yaxis, zaxis, indexing='ij')

B = np.zeros((*X.shape, 3))*u.T
B[..., 2] = (B0 - gradB*X)

E = np.zeros((*X.shape, 3))*u.V/u.m

In [28]: fig, ax = plt.subplots()
ax.plot(xaxis, B[:,50,50,0], label='Bx')
ax.plot(xaxis, B[:,50,50,1], label='By')
ax.plot(xaxis, B[:,50,50,2], label='Bz')
ax.set_xlabel("X (m)")
ax.set_ylabel("B (T)")
ax.legend();

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 14/19

Now we need to set up the time axis again. This time, since B is changing, we'll use the
minimum gyroperiod across the entire domain to make sure we always resolve the gyration.

Now we can call the particle tracking function

In addition to the gyration and the velocity of the particle in the z direction, the particle now
also has a drift in the y direction, which is the direction perpendicular to both B and gradB.

In the 2D and 3D plots we see the expected behavior: the particle gyrates in the XY plane,
but the gradB drift results in a guiding center motion in the +Y direction. We can see this
clearly by plotting each coordinate as a function of time.

In [29]: min_fci = formulary.frequencies.gyrofrequency(np.min(B[...,2]), particle)/2/np.pi/u
times = np.arange(0, (20/min_fci).to(u.s).value, (1/min_fci/100).to(u.s).value)*u.s

In [30]: x,v = track_particle(xaxis, yaxis, zaxis, E, B, x0, v0, particle, times)

In [31]: ax = plot3D(x, view=(20,-30,0))

In [32]: fig, ax = plt.subplots()
ax.set_title("Trajectory")
ax.set_xlabel("Time (ns)")

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 15/19

The Curvature Drift
The curvature drift occurs when particles travel through a region of curved magnetic field.

where is the vector pointing towards the center of curvature. If we have a magnetic field
in the direction with curvature in the direction, then we will expect to see a drift in the
direction.

However, geometrically a curved magnetic field also always has a non-zero magnetic field,
so in this simulation we will observe the sum of the two drifts (which are in the same
direction)

ax.plot(times.to(u.ns).value, x[:-1, 0].to(u.nm).value, label='X')
ax.plot(times.to(u.ns).value, x[:-1, 1].to(u.nm).value, label='Y')
ax.plot([], [], color='green', label='Z')
ax.set_ylabel("X,Y position (nm)")

ax2 = ax.twinx()
ax2.plot(times.to(u.ns).value, x[:-1, 2].to(u.nm).value, label='Z', color='green')
ax2.set_ylabel("Z position (nm)");
ax.legend();

vR =
mv∥

qB2

→Rc× →B

R2
c

→Rc

ẑ x̂ ŷ

()

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 16/19

As before, let's start by defining a particle.

Next we'll define our field grid. We will create a magnetic field with curvature by defining a
center of curvature off of the plane, defining the field in cylindrical coordinates, then
calculating the Cartesian components.

This is a bit of a tricky field, so let's make a vector plot to visualize it

vR + v∇B = (v2
∥

+ v2
⊥)

m

q

→Rc× →B

R2
cB2

1
2

In [33]: particle = Particle('p+')

v0 = np.array([.01,0,0])*u.m/u.s
x0 = np.array([-2e-9, 0, 0])*u.m

In [34]: R_curvature =100*u.nm
B0 = 5*u.T

Create the grid
xaxis = np.linspace(-1.5*u.nm, 1.5*u.nm, num=100)
yaxis = np.linspace(-1.5*u.nm, 1.5*u.nm, num=100)
zaxis = np.linspace(0, 1.5*u.nm, num=100)
X, Y, Z = np.meshgrid(xaxis, yaxis, zaxis, indexing='ij')

B = np.zeros((*X.shape, 3))*u.T
theta = np.arctan2((Y -R_curvature).to(u.m).value/10, X.to(u.m).value)
B[...,0] = -np.sin(theta)*B0
B[...,1] = np.cos(theta)*B0

E = np.zeros((*X.shape, 3))*u.V/u.m

In [35]: fig, ax = plt.subplots()
step=5
ax.quiver(X[::step,::step, 50], Y[::step, ::step, 50],
 B[::step,::step, 50, 0].value, B[::step, ::step, 50, 1].value);
ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)");

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 17/19

As before, we'll create a time array based on the maximum magnetic field

Now let's plot the results. The curvature drift and gradient B leads to a drift in the Y direction
(R_curvature X B) superimposed on the initial velocity we gave the particle in the X direction.

In [36]: fci = formulary.frequencies.gyrofrequency(np.max(np.linalg.norm(B, axis=-1)), parti
times = np.arange(0, (20/fci).to(u.s).value, (1/fci/100).to(u.s).value)*u.s

In [37]: # Call the function on our particle + fields
x,v = track_particle(xaxis, yaxis, zaxis, E, B, x0, v0, particle, times)

In [38]: plot3D(x, view=(40,180,0));

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 18/19

And, as before, here are the individual coordinates plotted.

In [39]: fig, ax = plt.subplots()
ax.set_title("Trajectory")
ax.set_xlabel("Time (ns)")

ax.plot(times.to(u.ns).value, x[:-1, 0].to(u.nm).value, label='X')
ax.plot(times.to(u.ns).value, x[:-1, 1].to(u.nm).value, label='Y')
ax.plot([], [], color='green', label='Z')
ax.set_ylabel("X,Y position (nm)")

ax2 = ax.twinx()
ax2.plot(times.to(u.ns).value, x[:-1, 2].to(u.nm).value, label='Z', color='green')
ax2.set_ylabel("Z position (nm)");
ax.legend();

6/7/23, 10:40 AM single_particle_drifts

localhost:8888/nbconvert/html/GitHub/PlasmaPy-Demos/2023-SULI/single_particle_drifts.ipynb?download=false 19/19

